Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dorothea Fiedler, Ognjen S. Miljanić and Eric J. Welch*

Department of Chemistry, University of California, Berkeley, CA 94720, USA

Correspondence e-mail: ejwel@alchemy.cchem.berkeley.edu

Key indicators

Single-crystal X-ray study T = 141 KMean $\sigma(C-C) = 0.007 \text{ Å}$ R factor = 0.038 wR factor = 0.108 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichlorooxo(N,N',N''-trimethyl-1,4,7-triazacyclononane- $\kappa^3 N$)vanadium(IV)

In the title compound, $[VOCl_2(C_9H_{21}N_3)]$, the V atom is at the center of a distorted octahedral coordination sphere and is coordinated by the three N atoms of the N,N',N''-trimethyl-1,4,7-triazacyclononane (Me₃tacn) ligand, and by two chlorides and an oxo ligand.

Received 10 May 2002 Accepted 13 June 2002 Online 21 June 2002

Comment

This compound, (I), along with other mononuclear complexes of the type MLX_3 , is used as a starting material for the preparation of binuclear oxo-bridged complexes. In turn, these dimers are used for modeling structural and magnetic properties of biologically relevant compounds (Steinkamp *et al.*, 1981). The title organometallic complex was prepared according to a previously published procedure (Köppen *et al.*, 1988). The authors reported that crystals were formed, but no X-ray analysis was presented.

The V atom has a distorted octahedral environment (Fig. 1 and Table 1) and is coordinated by the three N atoms of the Me₃tacn (tacn = triazacyclononane) ligand, and by two chlorides and an oxo ligand. The V–N bond length *trans* to the oxo ligand is significantly longer than the other two V–N bonds [V1-N3 = 2.349 (4) Å compared with V1-N2 = 2.189 (4) Å and V1-N1 = 2.195 (4) Å]. This is consistent with other vanadium–oxo–tacn complexes described in the literature (Köppen *et al.*, 1988; Knopp *et al.*, 1991). The angle O1–V1–N3 is 165.38 (13)°, which is similar to values observed in analogous Ti^{IV} and Mo^{IV} complexes of 162.54 (1) and 160.55 (6)°, respectively (Jeske *et al.*, 1994; Burger *et al.*, 1993).

Experimental

The title compound, (I), was synthesized as reported previously (Köppen *et al.*, 1988). Crystals of (I) were prepared by slow evaporation of a dimethylformamide solution.

Crystal data

$VCl_2O(C_9H_{21}N_3)]$	$D_x = 1.533 \text{ Mg m}^{-3}$	
$M_r = 309.13$	Mo $K\alpha$ radiation	
Monoclinic, $P2_1/c$	Cell parameters from 5166	
i = 13.6069 (15) Å	reflections	
p = 7.7759 (8) Å	$\theta = 1.7-25.4^{\circ}$	
c = 12.6586 (14) Å	$\mu = 1.12 \text{ mm}^{-1}$	
$\beta = 90.000 \ (2)^{\circ}$	T = 141 (2) K	
$V = 1339.4 (3) \text{ Å}^3$	Plate, blue	
Z = 4	$0.16 \times 0.12 \times 0.10 \text{ mm}$	

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Data collection

Siemens SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\min} = 0.48, \ T_{\max} = 0.92$
5156 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.108$ S = 0.722167 reflections 146 parameters 2167 independent reflections 1929 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 25.4^{\circ}$ $h = -15 \rightarrow 16$ $k = -6 \rightarrow 9$ $l = -14 \rightarrow 13$

 $\begin{array}{l} \mbox{H-atom parameters constrained} \\ w = 1/[\sigma^2(F_o{}^2) + (0.1P)^2] \\ \mbox{where } P = (F_o{}^2 + 2F_c{}^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.002 \\ \Delta\rho_{\rm max} = 0.30 \mbox{ e } {\rm \AA}{}^{-3} \\ \Delta\rho_{\rm min} = -0.53 \mbox{ e } {\rm \AA}{}^{-3} \end{array}$

Table 1

Selected geometric parameters (Å, °).

V1-01	1.637 (3)	V1-N3	2.349 (4)
V1-N2	2.189 (4)	V1-Cl1	2.3569 (12)
V1-N1	2.195 (4)	V1-Cl2	2.3603 (12)
O1-V1-N2	91.63 (15)	N1-V1-Cl1	163.50 (11)
O1-V1-N1	93.34 (14)	N3-V1-Cl1	87.36 (9)
N2-V1-N1	80.02 (13)	O1-V1-Cl2	100.19 (11)
O1-V1-N3	165.38 (13)	N2-V1-Cl2	165.44 (11)
N2-V1-N3	76.49 (14)	N1-V1-Cl2	90.76 (10)
N1-V1-N3	76.41 (13)	N3-V1-Cl2	90.47 (10)
O1-V1-Cl1	102.02 (11)	Cl1-V1-Cl2	92.40 (4)
N2-V1-Cl1	93.41 (11)		

The crystal had a 40.9% mirror twin perpendicular to the *a* axis (twin law = [$\overline{1}00,010,001$]). The unique angle β therefore was indistinguishable from 90°. H atoms were included in calculated positions and constrained.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1995); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997).

The authors acknowledge Matthew P. Shores for the preparation of the title compound for analysis. We also acknowledge Frederick J. Hollander and Allen G. Oliver for

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

assistance with operation of the diffractometer and for insightful discussions.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Bruker (1995). SAINT. Version 5.04. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (1999). SMART. Version 5.052d. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burger, K. S., Haselhorst, G., Stotzel, S., Weyhermüller, T., Wieghardt, K. & Nuber, B. (1993). J. Chem. Soc. Dalton Trans. pp. 1987–1997.
- Jeske, P., Haselhorst, G., Weyhermüller, T., Wieghardt, K. & Nuber, B. (1994). *Inorg. Chem.* 33, 2462–2471.
- Knopp, P., Wieghardt, K., Nuber, B. & Weiss, J. (1991). Z. Naturforsch. Teil B, 46, 1077–1084.
- Köppen, M., Fresen, G., Wieghardt, K., Llusar, R. M., Nuber, B. & Weiss, J. (1988). Inorg. Chem. 27, 721–727.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Steinkamp, R. E., Sieker, L. C., Jensen, L. H. & Sanders-Loehr, J. (1981). *Nature (London)*, **291**, 263–264.